Sensing Lena—Massively Distributed Compression of Sensor Images

Sergio D. Servetto

School of Electrical and Computer Engineering — Cornell University
http://cn.ece.cornell.edu/
Acknowledgements

- Ron Dabora (PhD candidate at Cornell), An-swol Hu (PhD candidate at Cornell), Megan Owen (PhD candidate at Cornell), Christina Peraki (PhD candidate at Cornell), João Barros (PhD candidate at TU München, visitor at Cornell).

- NSF, for awards CCR-0238271(CAREER), CCR-0330059(SENSORS); ONR, for an infrastructure grant to set up a sensor testbed; Professor Joachim Hagenauer (TU München).
Outline

• The Sensor Broadcast Problem
 – Problem Statement, Applications/Relevance, Main Challenges.

• Performance Measures for Broadcast Protocols
 – Achievability of $R_X(D/n)$: Sampling + Scalar Quantization.
 – Non-Achievability of $R_X(D/n)$: Scalar Quantization + Entropy Coding.
 – Maybe-Achievability of $R_X(D/n)$: Transform Coding.

• Wavelets and Sensor Broadcast
 – Basis Functions with Compact Support and Local Communication.
 – A Wavelet-Based Protocol.
 – Achievability of $R_X(D/n)$ using Wavelets.

• Summary and Conclusions

Outline

- The Sensor Broadcast Problem
 - Problem Statement, Applications/Relevance, Main Challenges.

- Performance Measures for Broadcast Protocols
 - Achievability of $R_X(D/n)$: Sampling + Scalar Quantization.
 - Non-Achievability of $R_X(D/n)$: Scalar Quantization + Entropy Coding.
 - Maybe-Achievability of $R_X(D/n)$: Transform Coding.

- Wavelets and Sensor Broadcast
 - Basis Functions with Compact Support and Local Communication.
 - A Wavelet-Based Protocol.
 - Achievability of $R_X(D/n)$ using Wavelets.

- Summary and Conclusions
The Sensor Broadcast Problem—Formulation

Each node broadcasts some local information from a 2-D random field, all nodes must form a rate-constrained estimate of the entire field:

Why do we care? Because of its extremal properties, and because we can use it as a building block for other more complex protocols...

S. D. Servetto. Sensing Lena—Massively Distributed Compression of Sensor Images.
Distributed Software Radio—An Application for Broadcast

If all nodes can be “sync’d” to the same data bits, they can all cooperate to generate a strong information bearing signal at a far receiver...

The Infamous Borg

How can the drones maintain a collective, global memory?

The Sensor Broadcast Problem—Is There Any Hope?

Does the network have enough capacity to support broadcast?

For a network with n nodes, with optimal routing, optimal power control, and optimal transmission schedules, the total transport capacity scales like $O(\sqrt{n})$—i.e., $O(1/\sqrt{n}) \to 0$ bits/node.

The answer is maybe:

- With independent encoders, to keep $\bar{D} = \frac{1}{n} \sum_{i,j} d(X_{ij}, \hat{X}_{ij})$ bounded, we need $O(\log n) \to \infty$ bits/node... i.e., the network chokes!

- But independent encoders ignore the fact that as $n \to \infty$, the data becomes increasingly correlated...

The Sensor Broadcast Problem—Previous Work

- For any 2D bandlimited sensor field \(\mathbf{X} = [X_1 \ldots X_n] \), \(R_X(D/n) \) grows as \(\Theta(\log(n/D)) \). Hence, fixing \(D/n \), it must be possible for the network to compress sensor fields to a constant number of bits, independent of \(n \).

- Quote (sic): “we show that as the density (of the network) increases to infinity, the total number of bits required to attain a given quality also increases to infinity under any compression scheme”.

So, what is the case? For fixed \(D/n \), is it possible or not for the sensors to encode bandlimited images into a number of bits that is independent of \(n \)?

In this talk we show the answer is yes, this is possible.
Outline

- The Sensor Broadcast Problem
 - Problem Statement, Applications/Relevance, Main Challenges.

- Performance Measures for Broadcast Protocols
 - Achievability of $R_X(D/n)$: Sampling + Scalar Quantization.
 - Non-Achievability of $R_X(D/n)$: Scalar Quantization + Entropy Coding.
 - Maybe-Achievability of $R_X(D/n)$: Transform Coding.

- Wavelets and Sensor Broadcast
 - Basis Functions with Compact Support and Local Communication.
 - A Wavelet-Based Protocol.
 - Achievability of $R_X(D/n)$ using Wavelets.

- Summary and Conclusions
Achievability of $R_X(D/n)$: **Sampling + Scalar Quantization**

Consider $f \in \mathcal{L}^2(\mathbb{R})$, with Fourier transform $F(\omega)$ and bandwidth Ω:

- **Uniform sampling:**
 - Uniformly sample f at rate 2Ω, over duration T.
 - Scalar quantize + entropy code each sample independently.
 - At distortion D/n, the total traffic generated is upper bounded by
 \[
 \sum_{k=1}^{2\Omega T} \left(0.5 \log(\sigma^2 n/D) + 0.255 \right) = c_1 \log(n/D) + c_2 = \Theta(R_X(D/n))
 \]

- **Random sampling:**
 - Let $P(\omega) = \sum_i f(t_i)e^{-i\omega t_i}/\lambda$, $t_i \sim \text{Poisson}(\lambda)$. If $\lambda > 2\Omega$, $P(\omega) \approx F(\omega)$.
 - Randomly sample f at fixed rate $\lambda > 2\Omega$. **Same rate of growth.**

So, $R_X(D/n)$ is indeed achievable. This system though complies only with the “letter”, but not with the “spirit” of the law... (Emre Telatar dixit).

Non-achievability: Scalar Quantization + Entropy Coding

A most interesting observation:

Can choose T so that the continuous valued stopping time

$$t_0 = \min_{t \in \mathbb{R}} \left\{ X(t) \geq T \right\}$$

can be estimated from the quantized samples $\hat{X}(\ell_1)\ldots\hat{X}(\ell_N)$.

Hence, $\mathcal{H}(\hat{X}(\ell_1)\ldots\hat{X}(\ell_N)) \geq \mathcal{H}(t_0) \rightarrow \infty$, for any scalar quantizer.

S. D. Servetto. *Sensing Lena—Massively Distributed Compression of Sensor Images.*
Maybe-Achievability of $R_x(D/n)$: Transform Coding

If we look at the proof of $R_x(D/n) = \Theta(\log(n/D))$, we recognize a key step: most eigenvalues of R_{xx} vanish, its null space increases with n.

Hence, if we could decorrelate, most coefficients would have vanishing variance—potential for big (enough?...) compression gains!

- For $X \sim N(0, R_{xx})$, optimal processing is given by the KLT $Y = U \cdot X$:
 - $R_{xx} = U \Lambda U^\top$, $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$.
 - $U = [\phi_1 \ldots \phi_n]$, basis of eigenvectors of R_{xx}.

- Since R_{xx} is doubly-Toeplitz, as $n \to \infty$, U becomes a 2D-DFT matrix.

So, we would like to decorrelate data to implement broadcast efficiently, but to decorrelate we need to solve a broadcast problem first...
Outline

- The Sensor Broadcast Problem
 - Problem Statement, Applications/Relevance, Main Challenges.

- Performance Measures for Broadcast Protocols
 - Achievability of $R_X(D/n)$: Sampling + Scalar Quantization.
 - Non-Achievability of $R_X(D/n)$: Scalar Quantization + Entropy Coding.
 - Maybe-Achievability of $R_X(D/n)$: Transform Coding.

- Wavelets and Sensor Broadcast
 - Basis Functions with Compact Support and Local Communication.
 - A Wavelet-Based Protocol.
 - Achievability of $R_X(D/n)$ using Wavelets.

- Summary and Conclusions
Compact Support and Local Communication

Can we approximate the optimal KLT with a suboptimal transform that is “less demanding” in terms of communication requirements?

Yes: wavelets with compact support.

Plus, as a bonus... wavelet-based image coding is a very well understood problem, so we can recycle all that knowledge in this context.
A Wavelet-based Sensor Broadcast Protocol

Achievability of $R_X(D/n)$ using Wavelets—Main Ideas

Outputs of the highpass branch in the filter bank will contain non-negligible energy only for inputs sampled at a rate close to critical...

- To deal with non-ideal filters and A/D noise, add a hard threshold.
- Good (best?) filters with given length: Daubechies’ maxflat family.
- Communication intensive only within area $= \Theta(1/$ spatial bandwidth$)$.
- Robust to lack of knowledge on field statistics: oversample + compress.

S. D. Servetto. *Sensing Lena—Massively Distributed Compression of Sensor Images.*

IEEE ICIP—9/15/03.
Outline

● The Sensor Broadcast Problem
 – Problem Statement, Applications/Relevance, Main Challenges.

● Performance Measures for Broadcast Protocols
 – Achievability of $R_X(D/n)$: Sampling + Scalar Quantization.
 – Non-Achievability of $R_X(D/n)$: Scalar Quantization + Entropy Coding.
 – Maybe-Achievability of $R_X(D/n)$: Transform Coding.

● Wavelets and Sensor Broadcast
 – Basis Functions with Compact Support and Local Communication.
 – A Wavelet-Based Protocol.
 – Achievability of $R_X(D/n)$ using Wavelets.

● Summary and Conclusions
Summary and Conclusions

Our main contribution:

Elements of a system capable of compressing down to a finite-length bit stream all the measurements captured by a dense sensor network.

Key: while $\mathcal{H}(\hat{X}_1...\hat{X}_n)$ may grow unbound, there are transforms \mathbf{f} such that:
(a) $\mathcal{H}(\mathbf{f}(\hat{X}_1...\hat{X}_n))$ does not, and (b) \mathbf{f} can be computed within the network.

- $R_X(D/n)$ is indeed achievable with distributed processing of all samples, without turning off sensors—letter and spirit!

- After the dust settles, sensor broadcast does work.

Currently working on implementing a broadcast algorithm, for use in a real sensor network prototype—work with http://www.iwtwireless.com/.

Ladran Sancho, señal que cabalgamos...”
— Don Quixote de la Mancha

Main Corollary...

http://cn.ece.cornell.edu/