On the Maximum Stable Throughput Problem in Random Networks with Directional Antennas

Christina Peraki
Sergio D. Servetto

School of Electrical and Computer Engineering — Cornell University
Outline

● **Goal:** Determination of the *maximum stable throughput* achievable in random networks with directional antennas.
 – Problem Setup.
 – Why Directional Antennas?
 – Some Related Work.

● **Formulation:** Network flow problem in a random unit-disk graph.
 – Flows on Random Graphs.
 – Restriction of Optimization Domain.
 – Max-flow/Min-cut Theorem.

● **Models of Communication:**
 – Omnidirectional Transmissions.
 – “Simple” Directional Transmissions.
 – “Complex” Directional Transmissions.
Outline

• **Goal:** Determination of the *maximum stable throughput* achievable in random networks with directional antennas.
 – Problem Setup.
 – Why Directional Antennas?
 – Some Related Work.

• **Formulation:** Network flow problem in a random unit-disk graph.
 – Flows on Random Graphs.
 – Restriction of Optimization Domain.
 – Max-flow/Min-cut Theorem.

• **Models of Communication:**
 – Omnidirectional Transmissions.
 – “Simple” Directional Transmissions.
 – “Complex” Directional Transmissions.
Problem Setup

- \(n \) nodes placed on \([0, 1] \times [0, 1]\) uniformly at random.
- Each node directly connected to nodes within distance \(d_n \).
- Links: fixed finite capacity \(L \) independent of network size.

- Find MST: total number of packets all sources can inject into the network by keeping the size of the largest queue bounded.
Why directional antennas?

- Higher degree of spatial reuse of shared medium.
- Smaller number of hops visited by a packet on its way to its destination.
- Can their use provide gains in MST?
Some Related Work

- Condition for the graph to be connected with probability 1, as $n \to \infty$, and for any $\xi_n \to \infty$:

$$\pi d_n^2 = \frac{\log n + \xi_n}{n},$$

- Total throughput: $\Theta\left(\sqrt{n/\log n}\right)$—per node: $\Theta\left(1/\sqrt{n \log(n)}\right)$.

Can directional antennas be used to achieve non-vanishing throughput per node? If so, at what cost?
Outline

- **Goal:** Determination of the maximum stable throughput achievable in random networks with directional antennas.
 - Problem Setup.
 - Why Directional Antennas?
 - Some Related Work.

- **Formulation:** Network flow problem in a random unit-disk graph
 - Flows on Random Graphs.
 - Restriction of Optimization Domain.
 - Max-flow/Min-cut Theorem.

- **Models of Communication:**
 - Omnidirectional Transmissions.
 - “Simple” Directional Transmissions.
 - “Complex” Directional Transmissions.

On the Maximum Stable Throughput Problem in Random Networks with Directional Antennas. ACM MobiHoc—6/02/03.
Flows on Random Graphs

Finding maximum stable throughput in our network: instance of multicommodity flow problem:

- n commodities: Packets from source s_i to receiver t_i.
- Sum of packets transmitted by all sources cannot exceed capacity of a link.
- What is the largest number of packets that can be injected simultaneously by all sources?

Whenever possible, solvable using linear programming methods.

On the Maximum Stable Throughput Problem in Random Networks with Directional Antennas. ACM MobiHoc—6/02/03.
Restriction of Optimization Domain

Not much is known about the **structure** of optimal solutions to the maximum multicommodity flow problem. Special case of high interest:

- Still have constriction in capacity.
- Can make use of standard flow methods to solve the problem.
- Scaling laws obtained coincide with those in the Gupta-Kumar capacity paper: *this restriction does not change the rate of growth of the value of the linear programs.*
Max-flow/Min-cut Theorem

- The value of any flow f from the supersource s to the supersink t in G is bounded from above by the capacity of any cut of G for which $s \in S$ and $t \in T$.

- According to the max-flow/min-cut theorem, f is a flow of maximum value iff $|f| = c(S, T)$ (for some cut (S, T)).

We determine how many edges straddle simultaneously a minimum cut in order to compute the maximum flow.

On the Maximum Stable Throughput Problem in Random Networks with Directional Antennas. ACM MobiHoc—6/02/03.
Proof Technique: Two Steps

- First, compute the **expected** number of edges that straddle the central cut.

 Determination of ensemble averages.

- Then prove that, in almost all networks, the **actual** number of edges that straddle the central cut differs from the mean at most by a constant factor.

 Proof of sharp concentration around the mean.
Tools

- Expected number of points in a set $A \subset [0, 1] \times [0, 1]$: If N the number of points in A then:

$$E(N) = n|A|,$$

where n the total number of points in $[0, 1] \times [0, 1]$.

- Chernoff bounds for sharp concentration results:

$$P \left[|N - n|A|| > \delta n|A| \right] < e^{-\theta n|A|},$$

for any $0 < \delta < 1$, θ a function of δ and $\theta > 0$ always.
Outline

- **Goal**: Determination of the *maximum stable throughput* achievable in random networks with directional antennas.
 - Problem Setup.
 - Why Directional Antennas?
 - Some Related Work.

- **Formulation**: Network flow problem in a random unit-disk graph.
 - Flows on Random Graphs.
 - Restriction of Optimization Domain.
 - Max-flow/Min-cut Theorem.

- **Models of Communication**:
 - Omnidirectional Transmissions.
 - “Simple” Directional Transmissions.
 - “Complex” Directional Transmissions.
OMNIDIRECTIONAL ANTENNAS (I)

- For a transmission to be successfully decoded, only one transmission has to be in progress within the range of a receiver.

A transmission model based on omnidirectional antennas and pure collisions.

On the Maximum Stable Throughput Problem in Random Networks with Directional Antennas. ACM MobiHoc—6/02/03.
OMNIDIRECTIONAL ANTENNAS (II)

- Average number of edges across the cut:

- For a receiver at location \((x, y)\), at most one transmitter in the shaded region \(T_{xy}\) can send a message. An upper bound to the expected number of transmissions is:

\[
\frac{2}{\pi d_n} = O \left(\sqrt{\frac{n}{\log n}} \right).
\]
OMNIDIRECTIONAL ANTENNAS (III)

- Upper bound is asymptotically tight. Explicit flow construction:

\[\lim_{n \to \infty} P \left[\bigcap_{j=1}^{1/2d_n} j\text{-th circle has } \Theta(\log(n)) \text{ nodes} \right] = 1. \]

- A uniform convergence result:

 MST is \(\Theta \left(\frac{1}{2d_n} \right) = \Theta \left(\frac{2}{\pi d_n} \right) = \Theta \left(\sqrt{n \log(n)} \right) \), matching known laws.

On the Maximum Stable Throughput Problem in Random Networks with Directional Antennas. ACM MobiHoc—6/02/03.
DIRECTIONAL ANTENNAS

- Change of collision model:
 - Transmitters can generate beams of arbitrarily narrow width.
 - Receivers can resolve different transmissions as long as there is an arbitrarily small positive angle between receptions.

- This model presents the most favorable set of assumptions on directional antennas...

On the Maximum Stable Throughput Problem in Random Networks with Directional Antennas. ACM MobiHoc—6/02/03.
A SINGLE DIRECTED BEAM (I)

- Transmitters can generate a beam of arbitrarily narrow width aimed at any particular receiver.
- Receivers can accept any number of incoming messages, provided transmitters are not in same straight line.

A single beam model for communication between nodes.
A SINGLE DIRECTED BEAM (II)

- Average number of edges across the cut:

- Average number of transmitters in L and receivers in R is nd_n.

- Maximum of $nd_n(1 - \frac{1}{e})$ transmissions can actually be received on average—*a standard occupancy problem of throwing balls into bins.*

- Using the Chernoff Bound again, MST is $\Theta(nd_n)$.
A SINGLE DIRECTED BEAM (III)

- Number of edges across the cut is $\Theta(nd_n) = \Theta\left(\sqrt{n \log(n)}\right)$.

- Increase from omnidirectional case: $\Theta(\log(n))$.

- Why don’t we increase the connectivity radius to get linear MST?
 - In that case d_n should satisfy: $\Theta(nd_n) = \Theta(n)$, and so $d_n = \Theta(1)$.
 - Minimum number of resolvable beams required:
 $$\gamma = n \cdot \pi d_n^2 = n \cdot \Theta(1)^2 = \Theta(n),$$
 maximum angle of dispersion decays linearly in n, and exponentially in $\log(n)$ (minimum connectivity requirement).
MULTIPLE DIRECTED BEAMS (I)

- Transmitters can generate an arbitrary number of beams, of arbitrarily narrow width, aimed at any particular receiver.

- Receivers can accept any number of incoming messages, provided the transmitters are not in the same straight line.
MULTIPLE DIRECTED BEAMS (II)

- Average number of edges across the cut:

- For an arbitrary point in L the points in Q_{xy} correspond to possible receivers. Adding up for all transmitters: $n^2 \int_L |Q_p| dp = \frac{2}{3} n^2 d_n^3$.

- Maximum of $\frac{2}{3} n^2 d_n^3 (1 - \frac{1}{e})$ transmissions can actually be received on average—same occupancy problem as for the single beam case.

- Using the Chernoff Bound again, MST is $\Theta \left(n^2 d_n^3 \right)$.

On the Maximum Stable Throughput Problem in Random Networks with Directional Antennas. ACM MobiHoc—6/02/03.
MULTIPLE DIRECTED BEAMS (III)

- Number of edges across the cut is $\Theta \left(n^2 d_n^3 \right) = \Theta \left(\sqrt{n \log^2(n)} \right)$.

- Increase from omnidirectional case: $\Theta(\log^2(n))$.

- Why don’t we increase the connectivity radius to get linear MST?
 - In that case d_n should satisfy: $\Theta \left(n^2 d_n^3 \right) = \Theta(n)$, so $d_n = \Theta(n^{-\frac{1}{3}})$.
 - Minimum number of resolvable beams required:
 $$\gamma = n \cdot \pi d_n^2 = n \Theta(n^{-\frac{2}{3}}) = \Theta(n^{\frac{1}{3}}),$$
 maximum angle of dispersion still decays polynomially in n, and exponentially in $\log(n)$ (minimum connectivity requirement).
Final Remarks

Summary:

- Analyzed the rate of growth for MST in various tx/rx architectures.
- Formulated the problem as a maximum flow one in random graphs.

Conclusions:

- Under very ideal assumptions, can gain at most $\Theta(\log^2(n))$ in MST by using directional antennas.
- Directional antennas are not expected to provide meaningful throughput gains in practice ... but can maybe help in other ways?

Current work: prove equivalence of linear programs, and develop numerical simulations.

On the Maximum Stable Throughput Problem in Random Networks with Directional Antennas. ACM MobiHoc—6/02/03.